Check Your Understanding - Curve Sketching and Optimization Problems

Answer on your own paper.

1. Determine the exact values of the critical numbers for the function given below.

$$
f(x)=\sqrt[3]{x^{3}-9 x}
$$

2. Find the absolute maximum value and absolute minimum value for the given interval.

$$
f(x)=6 x^{3}-6 x^{4}+5,-1 \leq x \leq 2
$$

3. Bubba Newton was asked to find intervals of increase and decrease for the curve $y=x^{\frac{1}{3}}\left(x^{2}-7\right)$. With the help of his brother, Figgy, Bubba determined the first derivative of the function to be $y^{\prime}=\frac{7}{3} x^{-\frac{2}{3}}\left(x^{2}-1\right)$. Neither Bubba nor Figgy know what do next. Help the poor boys out... complete the solution. Include a neatly labeled number line as part of your solution.
4. Determine whether the MVT can be applied to f on the closed interval. If the MVT can be applied, find all values of c given by the theorem. If the MVT cannot be applied, explain why not.
a) $f(x)=x^{3}+24 x-16,[0,4]$
b) $h(x)=4-|x-3|, \quad[-2,5]$
5. Determine whether Rolle's Theorem can be applied to f on the closed interval. If Rolle's Theorem can be applied, find all values c in the open interval such that $f^{\prime}(c)=0$. If Rolle's Theorem cannot be applied, explain why not.
$f(x)=x(1-x), \quad[-1,1]$
6. Determine the intervals of concavity on the graph of the function $g(x)$ given its second derivative below. Include a neatly labeled number line as part of your solution.

$$
g^{\prime \prime}(x)=\frac{x+1}{x^{\frac{2}{3}}(x+3)^{\frac{1}{3}}}
$$

7. A printer needs to make a poster that will have a total area of $200 \mathrm{in}^{2}$ and will have 1 inch margins on the sides, a 2 inch margin on the top and a 1.5 inch margin on the bottom. What dimensions of the poster will give the largest printed area?

8. Determine the points $y=x^{2}+1$ that are closest to the point $(0,2)$.

Challenge Problem

9. Determine the dimensions of the rectangle of largest area that can be inscribed inside the closed region bounded by the x-axis, y-axis and the graph of $y=8-x^{2}$.

10. Consider the function $f(x)=\frac{x^{2}+5 x+4}{x^{2}}$ and its first and second derivatives shown below.

$$
f^{\prime}(x)=\frac{-(5 x+8)}{x^{3}} \quad f^{\prime \prime}(x)=\frac{10 x+24}{x^{4}}
$$

Complete the table and draw a neatly labeled graph of $f(x)$ on a sheet of graph paper. It would be a good idea to neatly label and show your work on loose leaf.

Domain	
y-intercept(s)	
x-intercept(s)	
Symmetry	
VA(s)	
HA(s)	
Interval(s) of Inc.	
Interval(s) of Dec.	
Relative	
Maximum Value(s)	
Relative	
Minimum Value(s)	
Concave Up	
Inflection Point(s)	

