Critical Point Theorem (Fermat's Theorem- Stationary Points)

Note that f has local extrema at $x=b, x=c$, and $x=d$.

The tangent to the graph at each of these points is horizontal.
It is in fact always the case that: if f has a local extrema at b and $f^{\prime}(b)$ exists, then $f^{\prime}(b)=0$.

Sometimes, it is also possible for a continuous function to have a local extremum at a point where the derivative does not exist.

For example, the function $f(x)=|x-b|$ has a local min at $x=b$.

Note that the converse of this theorem is not true. It is not the case that all critical points are local extrema. For example, in the graph below, the point $x=b$ has a horizontal tangent, so $f^{\prime}(b)=0$, but f does not have a local extremum at b :

A critical number, c, is a number in the domain of f such that $f^{\prime}(c)=0$ or $f^{\prime}(c)$ is undefined.

