Extreme Values

On the graph above of the function f on the closed interval $[a, e]$, the point ($a, f(a)$) represents the absolute minimum, and the point $(d, f(d))$ represents the absolute maximum.

To define these terms more formally: a function f has an absolute maximum at $x=b$ if $f(b) \geq f(x)$ for all x in the domain of f. A function f has an absolute minimum at $x=b$ if $f(b) \leq f(x)$ for all x in the domain of f.

Together, the absolute minimum and the absolute maximum are known as the absolute extrema of the function.

Local Extrema

A function f has a local maximum at $x=\operatorname{aif} f(\mathrm{a})$ is the largest value that f attains "near a." Similarly, a function f has a local minimum at $x=$ a if $f(a)$ is the smallest value that f attains "near a."

To define these terms more formally: a function $f(x)$ has a local (or relative) maximum at $x=b$ if there is an open interval $/$ in which $f(b) \geq f(x)$ for all x in I. A function $f(x)$ has a local (or relative) minimum at $x=b$ if there is an open interval $/$ in which $f(b) \leq f(x)$ for all x in I.

In the graph below, f has a local maximum at $x=b$ and at $x=d$, and has a local minimum at $x=c$.

Taken together, the local maxima and local minima are known as the local extrema. A local minimum or local maximum may also be called a relative minimum or relative maximum.

Problem: Do absolute extrema always count as local extrema?
No. Absolute extrema that occur at the endpoints of an interval are not considered local extrema because the definition of a local extremum requires that there be an open interval I containing the extremum, but if the point is an endpoint, no such open interval exists.

