2.3 Differentiation Rules

The derivative has several different types of notation:

Notation	Meaning
$f^{\prime}(x)$	Derivative of $f(x)$
$\frac{d y}{d x}$	Derivative of y with respect to x.
y^{\prime}	Derivative of y
$\frac{d}{d x}[f(x)]$	Derivative of f with respect to x.

Constant Rule

$\frac{d}{d x}[c]=0 \quad$ This means the derivative of any number is zero. For example, suppose we had $y=9$ and the question asked us to find y^{\prime}. Then our answer would automatically be zero because $\mathrm{y}=9$ is a horizontal line. The slope of a horizontal line is always 0 .

EXAMPLE: Find $f^{\prime}(x)$ if $f(x)=4 \cdot \pi \cdot e^{2}$.
Since $e=2.71 \ldots$ and $\pi=3.14 \ldots$ then this whole equation is a constant, so $f^{\prime}(x)=0$.
Can you see a pattern of the derivative with the following table?

Original function	Derivative
$y=x^{2}$	$y^{\prime}=2 x$
$y=x^{3}$	$y^{\prime}=3 x^{2}$
$y=x^{5}$	$y^{\prime}=5 x^{4}$

It seems like the power comes down and the exponent is reduced by one. We can use this information to derive a formula for the derivative for $y=x^{n}$. This will be called the power rule.

Power Rule

If n is any real number, then $\frac{d}{d x} x^{n}=n x^{n-1}$ for all x where powers of x^{n} and x^{n-1} are defined.

Other Derivative Rules

$\frac{d}{d x}[f(x)+g(x)]=f^{\prime}(x)+g^{\prime}(x)$
$\frac{d}{d x}[f(x)-g(x)]=f^{\prime}(x)-g^{\prime}(x)$
$\frac{d}{d x}[c \cdot f(x)]=c \cdot f^{\prime}(x)$

EXAMPLE: If $y=x^{12}$, find y^{\prime}.
We will use the power rule formula. Here $\mathrm{n}=12 . y^{\prime}=12 x^{12-1}$ so $y^{\prime}=12 x^{11}$.
EXAMPLE: If $y=3 x^{4}$, find y^{\prime}.
We can write y as $y=3 \cdot x^{4}$. Now we use the power rule: $y^{\prime}=3 \cdot 4 x^{3}$, so $y^{\prime}=12 x^{3}$
EXAMPLE: If $g(x)=\frac{3}{2} x^{6}-x+3$, find $g^{\prime}(x)$.

First we will rewrite this as $g(x)=\frac{3}{2} \cdot x^{6}-1 x^{1}+3 x^{0}$. For this one we can apply the power rule to each term separately: $g^{\prime}(x)=\frac{3}{2} \cdot 6 x^{5}-1 x^{0}+0$. After simplifying we get: $g^{\prime}(x)=9 x^{5}-1$.

EXAMPLE: If $y=3 x\left(6 x-5 x^{2}\right)$, find y^{\prime}.
I recommend distributing first. You will get: $y=18 x^{2}-15 x^{3}$. Now apply the power rule. You will get: $y^{\prime}=36 x-45 x^{2}$. You can also write it as $y^{\prime}=9 x(4-5 x)$

EXAMPLE: If $f(x)=\sqrt[4]{x}$, find $f^{\prime}(x)$.
This one can be rewritten with fractional exponents: $f(x)=x^{\frac{1}{4}}$. We still can apply the power rule here: $f(x)=\frac{1}{4} x^{\frac{1}{4}-1}$, so after simplifying you get $f(x)=\frac{1}{4} x^{-\frac{3}{4}}$. You do not want this as a negative exponent, so place x in the denominator. You will get $f(x)=\frac{1}{4 x^{\frac{3}{4}}}$.

EXAMPLE: If $f(x)=\frac{2}{x^{3}}$, find $f^{\prime}(x)$.
If there is a variable in the denominator, write this as a negative exponent. You will get $f(x)=2 x^{-3}$. Then apply the power rule. You will get $f^{\prime}(x)=-6 x^{-4}$. Now write it without negative exponents and you will have $f^{\prime}(x)=-\frac{6}{x^{4}}$.
EXAMPLE: If $f(x)=x+\frac{1}{x}$, find $f^{\prime}(x)$.
We need to first rewrite this as a negative exponent. You will get $f(x)=x+x^{-1}$. Apply the power rule. You will get $f^{\prime}(x)=1-x^{-2}$. Now rewrite without negative exponents: $f^{\prime}(x)=1-\frac{1}{x^{2}}$.

EXAMPLE: If $f(x)=\frac{2 x^{2}-3 x+1}{x}$, find $f^{\prime}(x)$.
I would suggest dividing each term by x and then simplifying: $f(x)=\frac{2 x^{2}}{x}-\frac{3 x}{x}+\frac{1}{x}$ so $f(x)=2 x-3+x^{-1}$.
Now apply the power rule: $f^{\prime}(x)=2-x^{-2}$. Finally rewrite with positive exponents: $f^{\prime}(x)=2-\frac{1}{x^{2}}$.
EXAMPLE: If $y=\sqrt{x}-\frac{5}{\sqrt{x}}+\sqrt{2}$, find y^{\prime}.
First write change the radicals into fractional exponents: $y=x^{\frac{1}{2}}-5 x^{-\frac{1}{2}}+\sqrt{2}$. I did not change the last square root of 2 into a fractional exponent because when I take the derivative this term will turn to zero. Now apply the product rule: $y^{\prime}=\frac{1}{2} x^{-\frac{1}{2}}+\frac{5}{2} x^{-\frac{3}{2}}$. Lastly rewrite with positive exponents: $y^{\prime}=\frac{1}{2 x^{\frac{1}{2}}}+\frac{5}{2 x^{\frac{3}{2}}}$. You may leave it with fraction exponents unless the question specifically tells you not to. Suppose this question did want you to write it with radicals. Then you would have: $y^{\prime}=\frac{1}{2 \sqrt{x}}+\frac{5}{2 \sqrt{x^{3}}}$, which is also $y^{\prime}=\frac{1}{2 \sqrt{x}}+\frac{5}{2 x \sqrt{x}}$. With common denominators it can be written as $y^{\prime}=\frac{x+5}{2 x \sqrt{x}}$.

EXAMPLE: Find the equation of the tangent line to the curve $y=3 x^{3}-6$ at the point $(2,18)$.
We will first find the derivative using the power rule: $y^{\prime}=9 x^{2}$. We can put in a 2 for x to get our slope: $m=9(2)^{2}=36$. Now we need to find the equation of a line with a slope of 36 that passes through $(2,18)$. We can use $y=m x+b$. Here $m=36, x=2$ and $y=18$: Put it into the $y=m x+b$ formula: $18=36(2)+b$. So solving this we get -54 for b. The equation is $y=36 x-54$.

EXAMPLE: Find the equation of the tangent line to the curve $y=3(5-x)^{2}$ at the point $(5,0)$.

To find the derivative we will first distribute: $y=3\left(25-10 x+x^{2}\right)$ so $y=3 x^{2}-30 x+75$. Now we take the derivative: $y^{\prime}=6 x-30$. We find the slope by putting in a five for $\mathrm{x}: \mathrm{m}=6(5)-30$. So $\mathrm{m}=0$. This is a horizontal line going through $(5,0)$, so the equation is $\mathrm{y}=0$.

EXAMPLE: Determine the point(s) at which $y=x^{2}+1$ has a horizontal tangent line.

A horizontal tangent line means that the slope is zero. So we must take the derivative and set it equal to zero.
$y^{\prime}=2 x \quad$ We have our derivative. Now we must set it equal to zero.
$0=2 x$
Now we solve for x.
$x=0$
So when $x=0, y=1$, so the point is $(0,1)$.

EXAMPLE: Determine the point(s) at which $y=x^{3}-27 x$ has a horizontal tangent line.
$y^{\prime}=3 x^{2}-27 \quad$ We have our derivative. Now we must set it equal to zero.
$0=3 x^{2}-27 \quad$ Now we solve for x .
$27=3 x^{2}$
$9=x^{2}$
$x= \pm 3 \quad$ Put each of these into the original equation for x and we get $(3,-54)$ and $(-3,54)$.
We unfortunately can't use the product rule on everything. We will look at ways to find derivatives of things multiplied together and divided.

Product Rule

$\frac{d}{d x}[f \cdot g]=f \cdot g^{\prime}+g \cdot f^{\prime}$

Quotient Rule

$\frac{d}{d x}\left[\frac{f}{g}\right]=\frac{g \cdot f^{\prime}-f \cdot g^{\prime}}{g^{2}}$

EXAMPLE: Use the product rule to find $H^{\prime}(x)$ if $H(x)=(6 x+5)\left(x^{3}-2\right)$.

$$
f \quad g
$$

In our problem, I labeled fand g. Now we apply the product rule formula. I have labeled each part.

$f \quad g^{\prime} \quad g \quad f^{\prime}$	
$H^{\prime}(x)$	$=(6 x+5)\left(3 x^{2}\right)+\left(x^{3}-2\right)(6) \quad$ Now we just simplify.
$H^{\prime}(x)$	$=18 x^{3}+15 x^{2}+6 x^{3}-12$
$H^{\prime}(x)$	$=24 x^{3}+15 x^{2}-12$

EXAMPLE: Use the quotient rule to find $H^{\prime}(x)$ if $H(x)=\frac{x^{2}+2}{2 x-7}$.

Here the numerator is always f and the denominator is always g . Now we use the quotient rule:
$H^{\prime}(x)=\frac{\begin{array}{c}g \quad f^{\prime} \quad f \quad g^{\prime} \\ (2 x-7)(2 x)-\left(x^{2}+2\right)(2)\end{array}}{(2 x-7)^{2}} \quad$ Now we distribute and simplify.
$H^{\prime}(x)=\frac{4 x^{2}-14 x-2 x^{2}-4}{(2 x-7)^{2}}$ Now just simplify to get our answer: $\quad H^{\prime}(x)=\frac{2 x^{2}-14 x-4}{(2 x-7)^{2}}$

EXAMPLE: Use the product rule to find $M^{\prime}(x)$ if $M(x)=\sqrt{x}\left(4-x^{2}\right)$. Write answer as a single fraction. $f \quad g$

Once again f and g are labeled. We need to use the product rule again.
$f \quad g^{\prime} \quad \mathrm{g} \quad f^{\prime}$
$M^{\prime}(x)=\sqrt{x}(-2 x)+\left(4-x^{2}\right) \frac{1}{2} x^{-\frac{1}{2}} \quad$ Now get rid of the negative exponent and rewrite with radicals.
$M^{\prime}(x)=-2 x \sqrt{x}+\frac{4-x^{2}}{2 \sqrt{x}} \quad$ We need common denominators to write this as a single fraction.
$M^{\prime}(x)=\frac{-2 x \sqrt{x}}{1} \cdot\left(\frac{2 \sqrt{x}}{2 \sqrt{x}}\right)+\frac{4-x^{2}}{2 \sqrt{x}} \quad$ We need to multiply across the top and across the bottom.
$M^{\prime}(x)=\frac{-4 x^{2}}{2 \sqrt{x}}+\frac{4-x^{2}}{2 \sqrt{x}} \quad$ Now combine as a single fraction.
$M^{\prime}(x)=\frac{4-5 x^{2}}{2 \sqrt{x}}$

EXAMPLE: Use the product rule to find $M^{\prime}(x)$ if $M(x)=\left(x^{2}+1\right)(x+5+1 / x)$.

$$
f \quad g
$$

$f \quad g^{\prime} \quad \mathrm{g} \quad f^{\prime}$
$M^{\prime}(x)=\left(x^{2}+1\right)\left(1-\frac{1}{x^{2}}\right)+\left(x+5+\frac{1}{x}\right)(2 x) \quad$ Now multiply this together.
$M^{\prime}(x)=x^{2}-1+1-\frac{1}{x^{2}}+2 x^{2}+10 x+2 \quad$ We simplify and add like terms.
$M^{\prime}(x)=3 x^{2}+10 x+2-\frac{1}{x^{2}} \quad$ We can leave our answer like this.

EXAMPLE: Use the quotient rule to find $H^{\prime}(x)$ if $H(x)=\frac{x}{\sqrt{x}-1}$.

We will use the quotient rule again. Remember the numerator is always f and the denominator is always g .
$H^{\prime}(x)=\frac{(\sqrt{x}-1)(1)-x \cdot \frac{1}{2} x^{-\frac{1}{2}}}{(\sqrt{x}-1)^{2}}$ Now we will simplify. The x 's cancel this way: $x \cdot x^{-\frac{1}{2}}=x^{\frac{1}{2}}$.
$H^{\prime}(x)=\frac{\sqrt{x}-1-\frac{1}{2} x^{\frac{1}{2}}}{(\sqrt{x}-1)^{2}} \quad$ Now we will multiply the top and bottom by 2 to clear the fraction.
$H^{\prime}(x)=\frac{2}{2} \cdot \frac{\sqrt{x}-1-\frac{1}{2} x^{\frac{1}{2}}}{(\sqrt{x}-1)^{2}}$
$H^{\prime}(x)=\frac{2 \sqrt{x}-2-\sqrt{x}}{2(\sqrt{x}-1)^{2}}$
I multiplied by 2 and then changed the fractional power back into a radical.
$H^{\prime}(x)=\frac{\sqrt{x}-2}{2(\sqrt{x}-1)^{2}}$
I added the like terms on top and this is as far as we can go.

EXAMPLE: Use the quotient rule to find $B^{\prime}(x)$ if $\quad B(x)=x^{4}\left(1-\frac{2}{x+1}\right)$.
I want to first get common denominators inside the parenthesis before I start taking derivatives.
$B(x)=x^{4}\left(\frac{x+1}{x+1}-\frac{2}{x+1}\right) \quad$ Now combine to get a single fraction inside the parenthesis.
$B(x)=x^{4}\left(\frac{x+1-2}{x+1}\right) \quad$ Now simplify the top.
$B(x)=x^{4}\left(\frac{x-1}{x+1}\right) \quad$ To avoid combining a product and quotient rule, distribute the x^{4}.
$B(x)=\frac{x^{5}-x^{4}}{x+1} \quad$ Now we are ready to use the quotient rule.
$B^{\prime}(x)=\frac{(x+1)\left(5 x^{4}-4 x^{3}\right)-\left(x^{5}-x^{4}\right)(1)}{(x+1)^{2}} \quad$ We want to multiply and simplify the numerator.
$B^{\prime}(x)=\frac{5 x^{5}-4 x^{4}+5 x^{4}-4 x^{3}-x^{5}+x^{4}}{(x+1)^{2}} \quad$ I multiplied the first two terms and distributed the negative.
$B^{\prime}(x)=\frac{4 x^{5}+2 x^{4}-4 x^{3}}{(x+1)^{2}} \quad$ You can leave your answer like this or you could also factor to get:
$B^{\prime}(x)=\frac{2 x^{3}\left(2 x^{2}+x-2\right)}{(x+1)^{2}} \quad$ This is as far as we can take it.

More on next page...

Higher Order Derivatives

$f(x)$	This is our original function
$f^{\prime}(x)$	First derivative of f
$f^{\prime \prime}(x)$	Second derivative of f (derivative of $\left.f^{\prime}(x)\right)$
$f^{\prime \prime \prime}(x)$	Third derivative of f (derivative of $\left.f^{\prime \prime}(x)\right)$
$f^{(n)}(x)$	The nth derivative of f (derivative of $f^{(n-1)}(x)$)

A function has derivatives of all orders once the derivative reaches zero.

EXAMPLE: Let $f(x)=4 x^{3}+5 x^{2}+3 x+1$. Find the derivatives of all orders.
We will use the power rule for this.
$f^{\prime}(x)=12 x^{2}+10 x+3 \quad$ In order to find $f^{\prime \prime}(x)$, take the derivative of $f^{\prime}(x)$ using the power rule.
$f^{\prime \prime}(x)=24 x+10 \quad$ Now we will take the derivative of $f^{\prime \prime}(x)$ to get $f^{\prime \prime \prime}(x)$.
$f^{\prime \prime \prime}(x)=24$
$f^{(4)}(x)=0 \quad$ The derivative is zero, and all subsequent derivatives are zero, so we've found the derivatives of all orders.

EXAMPLE: Let $f(x)=\frac{x^{3}+2 x^{2}-1}{x}$. Find $f^{\prime \prime \prime}(x)$.
You might think that we need to use the quotient rule for this one, but we don't need to. We can simplify this by dividing each term by $\mathrm{x}: \quad f(x)=\frac{x^{3}}{x}+\frac{2 x^{2}}{x}-\frac{1}{x}$. This simplifies to $f(x)=x^{2}+2 x-x^{-1}$
$f(x)=x^{2}+2 x-x^{-1}$
$f^{\prime}(x)=2 x+2+x^{-2}$
$f^{\prime \prime}(x)=2-2 x^{-3}$
$f^{\prime \prime \prime}(x)=\frac{6}{x^{4}}$
$f^{\prime \prime \prime}(x)=6 x^{-4} \quad$ Now we will take the derivative of $f^{\prime \prime}(x)$ to get $f^{\prime \prime \prime}(x)$.
Take the first derivative using the power rule.
In order to find $f^{\prime \prime}(x)$, take the derivative of $f^{\prime}(x)$ using the power rule.

