2.3 Differentiation Rules

The derivative has several different types of notation:

Notation	Meaning
f'(x)	Derivative of $f(x)$
dy	Derivative of y with respect to x.
\overline{dx}	
<i>y</i> ′	Derivative of y
$\frac{d}{dx}[f(x)]$	Derivative of f with respect to x.

Constant Rule

 $\frac{d}{dx}[c] = 0$ This means the derivative of any number is zero. For example, suppose we had y = 9 and the question asked us to find y'. Then our answer would automatically be zero because y = 9 is a horizontal line. The slope of a horizontal line is always 0.

EXAMPLE: Find f'(x) if $f(x) = 4 \cdot \pi \cdot e^2$.

Since e = 2.71... and $\pi = 3.14...$ then this whole equation is a constant, so f'(x) = 0.

Can you see a pattern of the derivative with the following table?

Original function	Derivative
$y = x^2$	y' = 2x
$y = x^3$	$y' = 3x^2$
$y = x^5$	$y' = 5x^4$

It seems like the power comes down and the exponent is reduced by one. We can use this information to derive a formula for the derivative for $y = x^n$. This will be called the power rule.

Power Rule

If *n* is any real number, then $\frac{d}{dx}x^n = nx^{n-1}$ for all *x* where powers of x^n and x^{n-1} are defined.

Other Derivative Rules

$$\frac{d}{dx}[f(x) + g(x)] = f'(x) + g'(x)$$
$$\frac{d}{dx}[f(x) - g(x)] = f'(x) - g'(x)$$
$$\frac{d}{dx}[c \cdot f(x)] = c \cdot f'(x)$$

EXAMPLE: If $y = x^{12}$, find y'.

We will use the power rule formula. Here n = 12. $y' = 12x^{12-1}$ so $y' = 12x^{11}$. EXAMPLE: If $y = 3x^4$, find y'.

We can write y as $y = 3 \cdot x^4$. Now we use the power rule: $y' = 3 \cdot 4x^3$, so $y' = 12x^3$

EXAMPLE: If
$$g(x) = \frac{3}{2}x^6 - x + 3$$
, find $g'(x)$.

First we will rewrite this as $g(x) = \frac{3}{2} \cdot x^6 - 1x^1 + 3x^0$. For this one we can apply the power rule to each term separately: $g'(x) = \frac{3}{2} \cdot 6x^5 - 1x^0 + 0$. After simplifying we get: $g'(x) = 9x^5 - 1$.

EXAMPLE: If $y = 3x(6x - 5x^2)$, find y'.

I recommend distributing first. You will get: $y = 18x^2 - 15x^3$. Now apply the power rule. You will get: $y' = 36x - 45x^2$. You can also write it as y' = 9x(4-5x)

EXAMPLE: If $f(x) = \sqrt[4]{x}$, find f'(x).

This one can be rewritten with fractional exponents: $f(x) = x^{\frac{1}{4}}$. We still can apply the power rule here: $f(x) = \frac{1}{4}x^{\frac{1}{4}-1}$, so after simplifying you get $f(x) = \frac{1}{4}x^{-\frac{3}{4}}$. You do not want this as a negative exponent, so place x in the denominator. You will get $f(x) = \frac{1}{4x^{\frac{3}{4}}}$.

EXAMPLE: If
$$f(x) = \frac{2}{x^3}$$
, find $f'(x)$.

If there is a variable in the denominator, write this as a negative exponent. You will get $f(x) = 2x^{-3}$. Then apply the power rule. You will get $f'(x) = -6x^{-4}$. Now write it without negative exponents and you will have

$$f'(x) = -\frac{6}{x^4}.$$

EXAMPLE: If $f(x) = x + \frac{1}{x}$, find $f'(x)$

We need to first rewrite this as a negative exponent. You will get $f(x) = x + x^{-1}$. Apply the power rule. You will get $f'(x) = 1 - x^{-2}$. Now rewrite without negative exponents: $f'(x) = 1 - \frac{1}{x^2}$.

Section 2.3 Notes Page 3

EXAMPLE: If $f(x) = \frac{2x^2 - 3x + 1}{x}$, find f'(x).

I would suggest dividing each term by x and then simplifying: $f(x) = \frac{2x^2}{x} - \frac{3x}{x} + \frac{1}{x}$ so $f(x) = 2x - 3 + x^{-1}$. Now apply the power rule: $f'(x) = 2 - x^{-2}$. Finally rewrite with positive exponents: $f'(x) = 2 - \frac{1}{x^2}$. EXAMPLE: If $y = \sqrt{x} - \frac{5}{\sqrt{x}} + \sqrt{2}$, find y'.

First write change the radicals into fractional exponents: $y = x^{\frac{1}{2}} - 5x^{-\frac{1}{2}} + \sqrt{2}$. I did not change the last square root of 2 into a fractional exponent because when I take the derivative this term will turn to zero. Now apply the product rule: $y' = \frac{1}{2}x^{-\frac{1}{2}} + \frac{5}{2}x^{-\frac{3}{2}}$. Lastly rewrite with positive exponents: $y' = \frac{1}{2x^{\frac{1}{2}}} + \frac{5}{2x^{\frac{3}{2}}}$. You may leave it with fraction exponents unless the question specifically tells you not to. Suppose this question did want you to write it with radicals. Then you would have: $y' = \frac{1}{2\sqrt{x}} + \frac{5}{2\sqrt{x^3}}$, which is also $y' = \frac{1}{2\sqrt{x}} + \frac{5}{2x\sqrt{x}}$. With common denominators it can be written as $y' = \frac{x+5}{2x\sqrt{x}}$.

EXAMPLE: Find the equation of the tangent line to the curve $y = 3x^3 - 6$ at the point (2, 18).

We will first find the derivative using the power rule: $y' = 9x^2$. We can put in a 2 for x to get our slope: $m = 9(2)^2 = 36$. Now we need to find the equation of a line with a slope of 36 that passes through (2, 18). We can use y = mx + b. Here m = 36, x = 2 and y = 18: Put it into the y = mx + b formula: 18 = 36(2) + b. So solving this we get -54 for b. The equation is y = 36x - 54.

EXAMPLE: Find the equation of the tangent line to the curve $y = 3(5-x)^2$ at the point (5, 0).

To find the derivative we will first distribute: $y = 3(25 - 10x + x^2)$ so $y = 3x^2 - 30x + 75$. Now we take the derivative: y' = 6x - 30. We find the slope by putting in a five for x: m = 6(5) - 30. So m = 0. This is a horizontal line going through (5, 0), so the equation is y = 0.

EXAMPLE: Determine the point(s) at which $y = x^2 + 1$ has a horizontal tangent line.

A horizontal tangent line means that the slope is zero. So we must take the derivative and set it equal to zero.

y' = 2x	We have our derivative. Now we must set it equal to zero.
0 = 2x	Now we solve for x.
0	

x = 0 So when x = 0, y = 1, so the point is (0, 1).

EXAMPLE: Determine the point(s) at which $y = x^3 - 27x$ has a horizontal tangent line.

 $y' = 3x^2 - 27$ We have our derivative. Now we must set it equal to zero. $0 = 3x^2 - 27$ Now we solve for x. $27 = 3x^2$ $9 = x^2$ $y = \pm 3$ Put each of these into the original equation for x and we get (3, -54) and (-3, 54).We unfortunately can't use the product rule on everything. We will look at ways to find derivatives of things multiplied together and divided.

Product Rule

 $\frac{d}{dx}[f \cdot g] = f \cdot g' + g \cdot f'$

Quotient Rule

 $\frac{d}{dx}\left[\frac{f}{g}\right] = \frac{g \cdot f' - f \cdot g'}{g^2}$

EXAMPLE: Use the product rule to find H'(x) if $H(x) = (6x+5)(x^3-2)$. f

In our problem, I labeled f and g. Now we apply the product rule formula. I have labeled each part.

f g' g f' $H'(x) = (6x+5)(3x^{2}) + (x^{3}-2)(6)$ Now we just simplify. $H'(x) = 18x^{3} + 15x^{2} + 6x^{3} - 12$ $H'(x) = 24x^{3} + 15x^{2} - 12$

EXAMPLE: Use the quotient rule to find H'(x) if $H(x) = \frac{x^2 + 2}{2x - 7}$.

Here the numerator is always f and the denominator is always g. Now we use the quotient rule:

$$H'(x) = \frac{\begin{pmatrix} g & f' & f & g' \\ (2x-7)(2x) - (x^2+2)(2) \\ (2x-7)^2 \\ g^2 \end{pmatrix}}{g^2}$$
 Now we distribute and simplify.

$$H'(x) = \frac{4x^2 - 14x - 2x^2 - 4}{(2x - 7)^2}$$
 Now just simplify to get our answer: $H'(x) = \frac{2x^2 - 14x - 4}{(2x - 7)^2}$

EXAMPLE: Use the product rule to find M'(x) if $M(x) = \sqrt{x}(4-x^2)$. Write answer as a single fraction. $f \quad g$

Once again f and g are labeled. We need to use the product rule again.

$$f \quad g' \quad g \quad f'$$

$$M'(x) = \sqrt{x}(-2x) + (4-x^2)\frac{1}{2}x^{-\frac{1}{2}}$$
Now get rid of the negative exponent and rewrite with radicals.
$$M'(x) = -2x\sqrt{x} + \frac{4-x^2}{2\sqrt{x}}$$
We need common denominators to write this as a single fraction
$$M'(x) = \frac{-2x\sqrt{x}}{1} \cdot \left(\frac{2\sqrt{x}}{2\sqrt{x}}\right) + \frac{4-x^2}{2\sqrt{x}}$$
We need to multiply across the top and across the bottom.
$$M'(x) = \frac{-4x^2}{2\sqrt{x}} + \frac{4-x^2}{2\sqrt{x}}$$
Now combine as a single fraction.
$$M'(x) = \frac{4-5x^2}{2\sqrt{x}}$$

EXAMPLE: Use the product rule to find M'(x) if $M(x) = (x^2 + 1)(x + 5 + 1/x)$.

g

f

$$f \qquad g' \qquad g \qquad f'$$

$$M'(x) = (x^{2} + 1)\left(1 - \frac{1}{x^{2}}\right) + \left(x + 5 + \frac{1}{x}\right)(2x)$$
Now multiply this together.
$$M'(x) = x^{2} - 1 + 1 - \frac{1}{x^{2}} + 2x^{2} + 10x + 2$$
We simplify and add like terms.
$$M'(x) = 3x^{2} + 10x + 2 - \frac{1}{x^{2}}$$
We can leave our answer like this.

EXAMPLE: Use the quotient rule to find H'(x) if $H(x) = \frac{x}{\sqrt{x-1}}$.

We will use the quotient rule again. Remember the numerator is always f and the denominator is always g.

$$H'(x) = \frac{\left(\sqrt{x} - 1\right)\left(1\right) - x \cdot \frac{1}{2}x^{-\frac{1}{2}}}{\left(\sqrt{x} - 1\right)^2}$$
 Now we will simplify. The x's cancel this way: $x \cdot x^{-\frac{1}{2}} = x^{\frac{1}{2}}$.
$$H'(x) = \frac{\sqrt{x} - 1 - \frac{1}{2}x^{\frac{1}{2}}}{\left(\sqrt{x} - 1\right)^2}$$
 Now we will multiply the top and bottom by 2 to clear the fraction.

$$H'(x) = \frac{2}{2} \cdot \frac{\sqrt{x} - 1 - \frac{1}{2}x^{\frac{1}{2}}}{\left(\sqrt{x} - 1\right)^2}$$

 $H'(x) = \frac{2\sqrt{x} - 2 - \sqrt{x}}{2(\sqrt{x} - 1)^2}$

I multiplied by 2 and then changed the fractional power back into a radical.

 $H'(x) = \frac{\sqrt{x} - 2}{2\left(\sqrt{x} - 1\right)^2}$

I added the like terms on top and this is as far as we can go.

EXAMPLE: Use the quotient rule to find B'(x) if $B(x) = x^4 \left(1 - \frac{2}{x+1}\right)$.

I want to first get common denominators inside the parenthesis before I start taking derivatives.

 $B(x) = x^4 \left(\frac{x+1}{x+1} - \frac{2}{x+1} \right)$ Now combine to get a single fraction inside the parenthesis.

 $B(x) = x^4 \left(\frac{x+1-2}{x+1}\right) \qquad \text{Now sin}$

Now simplify the top.

 $B(x) = x^{4} \left(\frac{x-1}{x+1} \right)$ To avoid combining a product and quotient rule, distribute the x^{4} . $B(x) = \frac{x^{5} - x^{4}}{x+1}$ Now we are ready to use the quotient rule.

 $B'(x) = \frac{(x+1)(5x^4 - 4x^3) - (x^5 - x^4)(1)}{(x+1)^2}$ We want to multiply and simplify the numerator. $B'(x) = \frac{5x^5 - 4x^4 + 5x^4 - 4x^3 - x^5 + x^4}{(x+1)^2}$ I multiplied the first two terms and distributed the negative. $B'(x) = \frac{4x^5 + 2x^4 - 4x^3}{(x+1)^2}$ You can leave your answer like this or you could also factor to get: $B'(x) = \frac{2x^3(2x^2 + x - 2)}{(x+1)^2}$ This is as far as we can take it.

More on next page...

Higher Order Derivatives

f(x)	This is our original function
f'(x)	First derivative of f
f''(x)	Second derivative of f (derivative of $f'(x)$)
f'''(x)	Third derivative of f (derivative of $f''(x)$)
$f^{(n)}(x)$	The nth derivative of f (derivative of $f^{(n-1)}(x)$)

A function has derivatives of all orders once the derivative reaches zero.

EXAMPLE: Let $f(x) = 4x^3 + 5x^2 + 3x + 1$. Find the derivatives of all orders.

We will use the power rule for this.

$f'(x) = 12x^2 + 10x + 3$	In order to find $f''(x)$, take the derivative of $f'(x)$ using the power rule.
f''(x) = 24x + 10	Now we will take the derivative of $f''(x)$ to get $f'''(x)$.
f'''(x) = 24	
$f^{(4)}(x) = 0$	The derivative is zero, and all subsequent derivatives are zero, so we've found the
	derivatives of all orders.

EXAMPLE: Let
$$f(x) = \frac{x^3 + 2x^2 - 1}{x}$$
. Find $f'''(x)$.

You might think that we need to use the quotient rule for this one, but we don't need to. We can simplify this by dividing each term by x: $f(x) = \frac{x^3}{x} + \frac{2x^2}{x} - \frac{1}{x}$. This simplifies to $f(x) = x^2 + 2x - x^{-1}$

$f(x) = x^2 + 2x - x^{-1}$	
$f'(x) = 2x + 2 + x^{-2}$	Take the first derivative using the power rule.
$f''(x) = 2 - 2x^{-3}$	In order to find $f''(x)$, take the derivative of $f'(x)$ using the power rule.
$f'''(x) = 6x^{-4}$	Now we will take the derivative of $f''(x)$ to get $f'''(x)$.
$f'''(x) = \frac{6}{x^4}$	