Performing Operations on Rational Expressions

Part Two: Quotients

Learning Targets

I can:

- determine the non-permissible values when performing operations on rational expressions
- determine, in simplified form, the quotient of rational expressions (AN5.2)

Dividing Rational Expressions

Let a, b, c, and d represent polynomials.

$$
\frac{a}{b} \div \frac{c}{d}=\frac{a}{b} \cdot \frac{d}{c}=\frac{a d}{b c} \text { where } b \neq 0, c \neq 0, \text { and } d \neq 0
$$

Strategy for Dividing Rational Expressions

1. Change the division sign to a multiplication sign and reciprocate the rational expression after the division sign.
(ie. multiply the first rational expression by the reciprocal of the second rational expression)
2. Completely factor all polynomial numerators and denominators.
3. State all non-permissible values.
4. Cancel factors that appear in both the numerator and denominator and reduce fractions.

Sample Problems

Simplify.
a) $\frac{25 y}{4 x^{2}} \div \frac{35 y^{8}}{32 x^{5}}$
b) $\frac{42 x^{2} y^{3}}{-81 x^{4} y^{5}} \div \frac{49 x^{4} y^{2}}{18 x y}$
c) $\frac{x^{2}-3 x-40}{14 x+2} \div \frac{64-x^{2}}{7 x+1}$
d) $\frac{x^{2}-3 x-18}{x^{2}+6 x+9} \div \frac{x^{2}+3 x+2}{x^{2}+8 x+15}$
e) $\frac{14 a+6}{6 a^{2}-20 a} \div \frac{14 a^{2}+13 a+3}{6 a^{2}-17 a-10}$

