Notes and Sample Problems - Applications of Exponential Functions

Exponential Growth/Decay Formula: $y=a b^{\frac{t}{P}}$

Defining the variables

\boldsymbol{y} represents the future amount (at time t)
\boldsymbol{a} represents the initial amount
\boldsymbol{b} represents the growth or decay factor

Note 1: If $b>1$, the equation models exponential growth
If $0<b<1$, the equation models exponential decay
Note 2: When given a percentage of growth or decay, determine the growth/decay factor by adding or subtracting the percent, as a decimal, from 1.

Examples: an amount increases by 3\%
an amount decreases by 40\%
$b=1+0.03=1.03$
$b=1-0.40=0.60$
\boldsymbol{t} represents the elapsed time
\boldsymbol{P} represents the period for the growth/decay to occur

Problems

1. A bacterial culture doubles every 2 hours. If the culture started with 24000 bacteria, how many bacteria will be present in 5 hours?

$$
\begin{aligned}
& y=a b^{\frac{t}{p}} \\
& y=2+000(2)^{\frac{5}{2}} \\
& y=135765
\end{aligned}
$$

2. The half-life of a radioactive sample is 4 hours. If 60 g of the sample was initially present, how much will remain after 7 hours? Round your answer to the nearest hundredth of a gram.

The amount of radioactive sample will be 17.84 g in 7 hours.
3. A bacteria culture triples every P hours. If the culture started with 13000 bacteria, and there are 24000 after 2 hours, what is the value of the period in hours? Round your answer to the nearest hundredth of an hour.

$$
\begin{aligned}
& y=a b^{\frac{t}{p}} \\
& 24000=13000^{\frac{2}{p}}(3)^{\frac{2}{p}} \\
& 1.8+615=3^{\frac{2}{p}}
\end{aligned}
$$

Method $1 \quad \frac{2}{5}$

$$
\begin{aligned}
& \log 1.84615=\log 3^{\circ} \\
& \log 1.8465=\frac{2}{p} \log 3
\end{aligned}
$$

$$
P=\frac{2 \log 3}{\log 1.8465}
$$

$$
p=3.58
$$

Use the choose of base formula

The period is 3.58 hours.
4. The half-life of a radioactive sample is 6.2 hours. If 2000 g of the sample is present after 7 hours, how many grams of the sample was initially present? Round your answer to the nearest gram.

$$
\begin{aligned}
& y=a b^{\frac{t}{p}} \\
& 2000=a\left(\frac{1}{2}\right)^{b .2} \\
& 2000=a(0.457222) \\
& a=\frac{2000}{0.4 \leqslant 7222} \\
& a=437 t
\end{aligned}
$$

6. The population of a town changes by an exponential growth factor, b, every 4 years. If the number of people grows from 2350 to 7000 in 3 years, what is the value of b ? Round your answer to 2 decimal places.

The value of the growth factor is 4.29 .

