Adding and Subtracting Radicals

Adding and subtracting radicals is very similar to adding and subtracting with variables.

Examples

$$
\begin{gathered}
5 x+3 x-2 x=6 x \\
5 \sqrt{11}+3 \sqrt{11}-2 \sqrt{11}=6 \sqrt{11}
\end{gathered}
$$

Only like radicals can be added or subtracted. If the indices and radicands are the same, then the terms in front of each like radical can be added or subtracted.

Example

Like Radicals

Like Radicals

Radicals may have to be simplified before they can be added or subtracted.

Example 1

$$
\begin{array}{rlrl}
& 5 \sqrt{45}+6 \sqrt{18}-2 \sqrt{98}+\sqrt{20} & & \text { Simplify radicals } \\
= & 5 \sqrt{9 \cdot 5}+6 \sqrt{9 \cdot 2}-2 \sqrt{49 \cdot 2}+\sqrt{4 \cdot 5} & \\
= & 5 \cdot 3 \sqrt{5}+6 \cdot 3 \sqrt{2}-2 \cdot 7 \sqrt{2}+2 \sqrt{5} & \\
= & 15 \sqrt{5}+18 \sqrt{2}-14 \sqrt{2}+2 \sqrt{5} & & \text { Combine like radicals } \\
= & 17 \sqrt{5}+4 \sqrt{2} & & \text { Final answer }
\end{array}
$$

Example 2

$$
\begin{array}{rlr}
& 4 \sqrt[3]{54}-9 \sqrt[3]{16}+5 \sqrt[3]{9} & \text { Simplify radicals } \\
= & 4 \sqrt[3]{27 \cdot 2}-9 \sqrt[3]{8 \cdot 2}+5 \sqrt[3]{9} & \\
= & 4 \cdot 3 \sqrt[3]{2}-9 \cdot 2 \sqrt[3]{2}+5 \sqrt[3]{9} & \\
= & \underbrace{12 \sqrt[3]{2}-18 \sqrt[3]{2}+5 \sqrt[3]{9}} & \text { Combine like terms } \\
& \text { Like Radicals } & \\
= & -6 \sqrt[3]{2}+5 \sqrt[3]{9} & \text { Final answer }
\end{array}
$$

Multiplying Radicals

Radicals may be multiplied together as long as their indices are the same. Multiply the factors outside the radical together and mulitply the radicands.

Product Rule of Radicals

$$
a \sqrt[n]{b} \cdot c \sqrt[n]{d}=a c \sqrt[n]{b d}
$$

Example 1

$$
\begin{aligned}
& -5 \sqrt{14} \cdot 4 \sqrt{6} \\
= & -20 \sqrt{84} \\
= & -20 \sqrt{4 \cdot 21} \\
= & -20 \cdot 2 \sqrt{21} \\
= & -40 \sqrt{21}
\end{aligned}
$$

Example 2

$$
\begin{aligned}
& 2 \sqrt[3]{18} \cdot 6 \sqrt[3]{15} \\
= & 12 \sqrt[3]{270} \\
= & 12 \sqrt[3]{27 \cdot 10} \\
= & 12 \cdot 3 \sqrt[3]{10} \\
= & 36 \sqrt[3]{10}
\end{aligned}
$$

When multiplying with radicals we can still use the distributive property or FOIL just as we would with variables.

Example 1

$$
\begin{aligned}
& 7 \sqrt{6}(3 \sqrt{10}-5 \sqrt{15}) \\
= & 21 \sqrt{60}-35 \sqrt{90} \\
= & 21 \sqrt{4 \cdot 15}-35 \sqrt{9 \cdot 10} \\
= & 21 \cdot 2 \sqrt{15}-35 \cdot 3 \sqrt{10} \\
= & 42 \sqrt{15}-105 \sqrt{10}
\end{aligned}
$$

Example 2

$$
\begin{aligned}
& (\sqrt{5}-2 \sqrt{3})(4 \sqrt{10}+6 \sqrt{6}) \\
= & 4 \sqrt{50}+6 \sqrt{30}-8 \sqrt{30}-12 \sqrt{18} \\
= & 4 \sqrt{25 \cdot 2}-2 \sqrt{30}-12 \sqrt{9 \cdot 2} \\
= & 4 \cdot 5 \sqrt{2}-2 \sqrt{30}-12 \cdot 3 \sqrt{2} \\
= & 20 \sqrt{2}-2 \sqrt{30}-36 \sqrt{2} \\
= & -16 \sqrt{2}-2 \sqrt{30}
\end{aligned}
$$

Example 3

$$
\begin{aligned}
& (2 \sqrt{5}-3 \sqrt{6})(7 \sqrt{2}-8 \sqrt{7}) \\
= & 14 \sqrt{10}-16 \sqrt{35}-21 \sqrt{12}+24 \sqrt{42} \\
= & 14 \sqrt{10}-16 \sqrt{35}-21 \sqrt{4 \cdot 3}+24 \sqrt{42} \\
= & 14 \sqrt{10}-16 \sqrt{35}-21 \cdot 2 \sqrt{3}+24 \sqrt{42} \\
= & 14 \sqrt{10}-16 \sqrt{35}-42 \sqrt{3}+24 \sqrt{42}
\end{aligned}
$$

