Radical Equations

In order to solve a radical equation we must raise both sides of the equation to an exponent. For example, to clear a square root, square both sides of the equation.

Sometimes when solving a radical equation, it is possible to get a value for the variable that is not an answer to the original equation. A value that does not work is called an extraneous solution. Therefore, all possible solutions must be checked in the original equation.

Example 1

$\sqrt{7x+2} = 4$	Square both sides of the equation.	Restriction on Variable
$\left(\sqrt{7x+2}\right)^2 = 4^2$ $7x+2 = 16$	Solve the linear equation.	$7x + 2 \ge 0$
7x = 16 - 2	solve the intell equation.	$7x \ge -2$
7x = 14 $x = 2$	Possible solution.	$x \ge \frac{-2}{7}$

Check x = 2 in the original equation.

Left Side	Right Side
$\sqrt{7x+2}$ $= \sqrt{7(2)+2}$ $= \sqrt{14+2}$ $= \sqrt{16}$ $= 4$	4

$$LS = RS$$

The solution is x = 2.

Example 2	$\sqrt{3x-2} + 11 = 0$	Isolate the radical.	Restriction on Variable
	$\sqrt{3x-2} = -11$		$3x - 2 \ge 0$
			$3x \ge 2$
	Negative Number	er!	$x \ge \frac{2}{3}$

This radical equation has no solution because a square root cannot equal a negative number.

Example 3

$x + \sqrt{4x + 1} = 5$ $\sqrt{4x + 1} = 5 - x$	Isolate the radical. Square both sides of the equation.	Restriction on Variable $4x + 1 \ge 0$
$\left(\sqrt{4x+1}\right)^2 = (5-x)^2$ $4x+1 = 25 - 10x + x^2$ $0 = x^2 - 10x - 4x + 25 - 1$	Solve the quadratic equation.	$4x \ge -1$
$0 = x^{2} - 14x + 24$ 0 = (x - 12)(x - 2)		$x \ge \frac{-1}{4}$
x = 12 $x = 2$	Possible solutions.	

Check x = 12 in the original equation.

Left Side	Right Side
	-
$x + \sqrt{4x} + 1$	5
$= 12 + \sqrt{4(12) + 1}$	
$= 12 + \sqrt{48 + 1}$	
$= 12 + \sqrt{49}$	
= 12 + 7	
= 19	

x = 12 is an extraneous solution

Check x = 2 in the original equation.

Left Side	Right Side
$x + \sqrt{4x + 1}$	5
$= 2 + \sqrt{4(2) + 1}$	
$= 2 + \sqrt{8 + 1}$	
$= 2 + \sqrt{9}$	
= 2 + 3	
= 5	

The solution is x = 2.