Radical Equations

In order to solve a radical equation we must raise both sides of the equation to an exponent. For example, to clear a square root, square both sides of the equation.

Sometimes when solving a radical equation, it is possible to get a value for the variable that is not an answer to the original equation. A value that does not work is called an extraneous solution. Therefore, all possible solutions must be checked in the original equation.

Example 1

$$
\begin{array}{cl}
\sqrt{7 x+2}=4 & \text { Square both sides of the equation. } \\
(\sqrt{7 x+2})^{2}=4^{2} & \\
7 x+2=16 & \text { Solve the linear equation. } \\
7 x=16-2 & \\
7 x=14 & \\
x=2 & \text { Possible solution. }
\end{array}
$$

$$
\begin{gathered}
\text { Restriction on } \\
\begin{array}{c}
\text { Variable } \\
7 x+2 \geq 0 \\
7 x \geq-2 \\
x \geq \frac{-2}{7}
\end{array}
\end{gathered}
$$

Check $x=2$ in the original equation.

Left Side	Right Side
$=\sqrt{7 x+2}$	4
$=\sqrt{7(2)+2}$	
$=\sqrt{14+2}$	
$=\sqrt{16}$	
$=4$	

$$
L S=R S \quad U^{\prime \prime}
$$

The solution is $x=2$.

Example 2

$$
\begin{aligned}
& \sqrt{3 x-2}+11=0 \quad \text { Isolate the radical. } \\
& \sqrt{3 x-2}=\underbrace{-\mathbf{1 1}}
\end{aligned}
$$

Negative Number!

Restriction on
Variable

$$
\begin{gathered}
3 x-2 \geq 0 \\
3 x \geq 2 \\
x \geq \frac{2}{3}
\end{gathered}
$$

This radical equation has no solution because a square root cannot equal a negative number.

Example 3

$$
\begin{array}{cl}
x+\sqrt{4 x+1}=5 & \text { Isolate the radical. } \\
\sqrt{4 x+1}=5-x & \text { Square both sides of the equation. } \\
(\sqrt{4 x+1})^{2}=(5-x)^{2} & \\
4 x+1=25-10 x+x^{2} & \text { Solve the quadratic equation. } \\
0=x^{2}-10 x-4 x+25-1 & \\
0=x^{2}-14 x+24 & \\
0=(x-12)(x-2) & \\
x=12 \quad x=2 & \text { Possible solutions. }
\end{array}
$$

$$
\begin{aligned}
& \text { Restriction on } \\
& \text { Variable } \\
& \begin{array}{c}
4 x+1 \geq 0 \\
4 x \geq-1 \\
x \geq \frac{-1}{4}
\end{array}
\end{aligned}
$$

Check $x=12$ in the original equation.

Left Side	Right Side
$x+\sqrt{4 x+1}$	5
$=12+\sqrt{4(12)+1}$	
$=12+\sqrt{48+1}$	
$=12+\sqrt{49}$	
$=12+7$	
$=19$	$\mathrm{LS} \neq \mathrm{RS}$

$$
x=12 \text { is an extraneous solution }
$$

Check $x=2$ in the original equation.

Left Side	Right Side
$\begin{gathered} \quad x+\sqrt{4 x+1} \\ =2+\sqrt{4(2)+1} \\ =2+\sqrt{8+1} \\ =2+\sqrt{9} \\ =2+3 \\ =5 \end{gathered}$	5

The solution is $x=2$.

