Simplifying Radicals

Expressing a radical in simplest form means:

- the radicand does not contain a factor that can be removed (there are no square roots, cube roots, 4th roots, etc. left under the root sign)
- there are no radicals in the denominator of a fraction.

Square Roots

Square roots are the most common type of radical. A square root "un-squares" a number.

Examples

$\sqrt{1}=1$	$\sqrt{121}=11$
$\sqrt{4}=2$	$\sqrt{625}=25$
$\sqrt{9}=3$	$\sqrt{-81}$ is undefined

Note - Any number times itself is always a positive number (or zero), so you can't ever get a negative number by squaring. Since square roots undo squaring, negative numbers can't have square roots.

Not all numbers have a nice even square root. For example, $\sqrt{8}=2.8284271247 \ldots$ To be as accurate as possible, we will express square roots in simplest radical form. To do this, we can use the Product Rule of Square Roots.

Product Rule of Square Roots

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

The fastest way to simplify a square root, is to find the greatest perfect square number that divides evenly into the radicand.

Example 1

$$
\begin{aligned}
& \sqrt{72} \\
=\sqrt{36 \cdot 2} & \\
=\sqrt{36} \cdot \sqrt{2} & \text { Split divisible by 36, a perfect square } \\
= & \text { Product Rule, take the square root of } 36 \\
= & \text { Simplified radical }
\end{aligned}
$$

Example 2

$$
\begin{aligned}
& 5 \sqrt{63} \\
= & 5 \sqrt{9 \cdot 7}
\end{aligned} \quad \begin{array}{ll}
\text { Split into factors } \\
= & 5 \sqrt{9} \cdot \sqrt{7} \\
= & 5 \cdot 3 \sqrt{7} \\
= & \text { Product Rule, take the square root of } 9 \\
=15 \sqrt{7} & \\
\text { Multiply coefficients } \\
\text { Simplified radical }
\end{array}
$$

Example 3

$$
\begin{aligned}
& \frac{9}{4} \sqrt{48} \\
= & \frac{9}{4} \sqrt{16} \cdot 3 \\
= & \frac{9}{4} \sqrt{16} \cdot \sqrt{3} \\
= & \frac{9}{4} \cdot 4 \sqrt{3} \\
= & 9 \sqrt{3}
\end{aligned}
$$

Radicands may contain variables. When taking the square root of a variable, simply divide the exponent by the index, 2.

Example 1

$$
\begin{aligned}
& \sqrt{x^{8}} \quad \text { Divide the exponent by } 2 \\
= & x^{4}
\end{aligned}
$$

Example 2

$$
\begin{aligned}
& -3 \sqrt{18 x^{4} y^{6} z^{10}} \\
= & -3 \sqrt{9 \cdot 2 x^{4} y^{6} z^{10}} \\
= & -3 \sqrt{9} \cdot \sqrt{2 x^{4} y^{6} z^{10}} \\
= & -3 \cdot 3 x^{2} y^{3} z^{5} \sqrt{2} \\
= & -9 x^{2} y^{3} z^{5} \sqrt{2}
\end{aligned}
$$

18 is divisible by 9 , a perfect square
Split into factors
Product Rule, take the square root of 9 , and divide the exponents by 2
Multiply coefficients
Simplified radical

We can't always evenly divide the exponent on a variable by 2 . Any whole number answer is how many of that variable will come out of the root. Any remainder is how many of the variable are left behind as part of the radicand.

Example 3

$$
\begin{aligned}
& \sqrt{20 x^{5} y^{9} z^{6}} \\
= & \sqrt{4 \cdot 5 x^{5} y^{9} z^{6}} \\
= & \sqrt{4} \cdot \sqrt{5 x^{5} y^{9} z^{6}} \\
= & 2 x^{2} y^{4} z^{3} \sqrt{5 x y}
\end{aligned}
$$

20 is divisible by 4 , a perfect square
Split into factors
Product Rule, take the square root of 4 , divide the exponents by 2
Simplified radical

Higher Roots

While square roots are the most common type of radical, we can take higher roots of radicands as well: cube roots, fourth roots, fifth roots, etc.

Examples

$\sqrt[3]{125}=5$	$\sqrt[4]{-64}=-4$
$\sqrt[4]{81}=3$	$\sqrt[7]{-128}=-2$
$\sqrt[5]{32}=2$	$\sqrt[4]{-16}$ is undefined

Note: We can take an odd root of a negative number, because a negative number raised to an odd power is still negative.

Product Rule of Higher Roots

$$
\sqrt[n]{a \cdot b}=\sqrt[n]{a} \cdot \sqrt[n]{b}
$$

Where n is a natural number, and a and b are real numbers.

Example 1

$$
\begin{array}{rl}
& \sqrt[3]{54} \\
=\sqrt[3]{27} \cdot 2 & 54 \text { is divisible by } 27, \text { a perfect cube } \\
=\sqrt[3]{27} \cdot \sqrt[3]{2} & \text { Split into factors } \\
=3 \sqrt[3]{2} & \text { Product rule, take the cube root of } 27 \\
\text { Simplified radical }
\end{array}
$$

We can also take a higher root of a variable. Divide the exponent on the variable by the index. Any whole number answer is how many of that variable will come out of the root. Any remainder is how many of the variable are left behind as part of the radicand.

Example 2

$$
\begin{aligned}
& \sqrt[5]{x^{25} y^{17} z^{3}} \\
= & x^{5} y^{35} \sqrt{y^{2} z^{3}}
\end{aligned} \quad \begin{aligned}
& \text { Divide each exponent by } 5 \\
& \text { (whole number outside, remainder inside) } \\
& \text { Simplified radical }
\end{aligned}
$$

Example 3

$$
\begin{aligned}
& 2 \sqrt[3]{40 a^{4} b^{8}} \\
= & 2 \sqrt[3]{8 \cdot 5 a^{4} b^{8}} \\
= & 2 \sqrt[3]{8} \cdot \sqrt[3]{5 a^{4} b^{8}} \\
= & 2 \cdot 2 a b^{2} \sqrt[3]{5 a b^{2}} \\
= & 4 a b^{2} \sqrt[3]{5 a b^{2}}
\end{aligned}
$$

Look for a perfect cube that is a factor of 40 , the perfect cube is 8
Split the factors
Product Rule, take the cube root of 8 , and divide the exponents by 3
Multiply coefficients
Simplified radical

