The Mean Value Theorem

Connect any two points, $(a, f(a))$ and $(b, f(b))$, on a differentiable function f to form a line:

Intuitively, it should be clear that we can find a point at c between a and b where the tangent line is parallel to the secant drawn between a and b. In other words, it should be possible to find a point such that the slope of the tangent at c is the same as the slope of the secant line drawn from a to b.

The Mean Value Theorem states that if f is continuous on $[a, b]$ and differentiable on (a, b), then there exists a point at c on $[a, b]$ for which the following is true:

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Problem: Use the Mean Value Theorem to find the c on $[a, b]$ such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

1: $f(x)=x^{2}-4 x$ on $[2,4]$

$$
\begin{aligned}
f^{\prime}(c) & =\frac{0-(-4)}{2}=2 \\
2 c-4 & =2 \\
c & =3
\end{aligned}
$$

2: $f(x)=\frac{1}{x}$ on $[1,2]$

$$
\begin{aligned}
f^{\prime}(c) & =\frac{\frac{1}{2}-1}{2-1} \\
& =-\frac{1}{2} \\
-\frac{1}{c^{2}} & =-\frac{1}{2} \\
c & = \pm \sqrt{2}
\end{aligned}
$$

Rolle's Theorem

Rolle's Theorem is a special case of the Mean Value Theorem in which

$$
f(a)=f(b)
$$

If f is continuous on $[\mathrm{a}, \mathrm{b}]$ and differentiable on (a, b), and $f(a)=f(b)$, then there is a point c on (a, b) where $f^{\prime}(c)=0$.

The figure below should make clear that this is just a special case of the Mean Value Theorem:

