The Six Trigonometric Ratios

The Three Primary Trigonometric Ratios

1. Sine Ratio	$\sin\theta = \frac{opposite}{hypotenuse}$	$\sin\theta = \frac{y}{r}$
2. Cosine Ratio	$\cos\theta = \frac{adjacent}{hypotenuse}$	$\cos\theta = \frac{x}{r}$
3. Tangent Ratio	$\tan \theta = \frac{opposite}{adjacent}$	$\tan \theta = \frac{y}{x}$

The Three Reciprocal Trigonometric Ratios

1. Cosecant Ratio

2. Secant Ratio

 $\sec \theta = \frac{r}{x}$

 $\sec \theta = \frac{hypotenuse}{adjacent}$

$$\csc \theta = \frac{hypotenuse}{oppposite}$$
$$\csc \theta = \frac{r}{v}$$

$$\csc\theta = \frac{1}{\sin\theta}$$

The secant ratio is the reciprocal of the cosine ratio.

$$\sec\theta = \frac{1}{\cos\theta}$$

3. Cotangent Ratio

$$\cot \theta = \frac{adjacent}{opposite}$$
$$\cot \theta = \frac{x}{y}$$

The cotangent ratio is the reciprocal of the tangent ratio.

$$\cot\theta = \frac{1}{\tan\theta}$$

Suppose the angle θ is an angle in standard position. Given a point (x, y) on the terminal arm, at a distance r from the origin, we can determine the exact values of the six trigonometric ratios.

Example 1

Given the point P(-3, 4), find the exact values of the six trigonometric ratios.

- $\sin\theta = \frac{4}{5} \qquad \qquad \cos\theta = \frac{-3}{5} \qquad \qquad \tan\theta = \frac{4}{-3} = \frac{-4}{3}$
- $\csc \theta = \frac{5}{4}$ $\sec \theta = \frac{5}{-3} = \frac{-5}{3}$ $\cot \theta = \frac{-3}{4}$
- NOTE If you are asked to find a trig ratio's exact value, leave the ratio as a fraction in simplest form. (No decimals!)
 You may have to rationalize denominators so as not to leave radicals in the denominators of ratios.

Example 2

If $\sec \theta = -\frac{3}{2}$ and $\tan \theta > 0$, find the exact values of the other five trigonometric ratios.

 $\sec \theta = \frac{r}{x}$ r = 3, x = -2 (Remember, the radius must be positive.)

Use the CAST Rule to determine in which quadrant must the terminal arm lie?

S	A	Secant is the reciprocal of cosine, therefore it is negative in Quadrants 2 and <mark>3.</mark>	
тС	Tangent is positive in Quadrants 1 and 3.		
	The terminal arm must lie in Quadrant 3.		

Find y.

$$y^{2} = r^{2} - x^{2}$$

$$y^{2} = (3)^{2} - (-2)^{2}$$

$$y^{2} = 9 - 4$$

$$y^{2} = 5$$

$$y = -\sqrt{5}$$
You must choose the negative root.

$$\sin \theta = \frac{-\sqrt{5}}{3}$$

$$\cos \theta = \frac{-2}{3}$$

$$\tan \theta = \frac{-\sqrt{5}}{-2} = \frac{\sqrt{5}}{2}$$

$$\csc \theta = \frac{3}{-\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \frac{3\sqrt{5}}{-5} = -\frac{3\sqrt{5}}{5}$$

$$\cot \theta = \frac{-2}{-\sqrt{5}} \cdot \frac{-\sqrt{5}}{-\sqrt{5}} = \frac{2\sqrt{5}}{5}$$