The Six Trigonometric Ratios

The Three Primary Trigonometric Ratios

1. Sine Ratio

$$
\sin \theta=\frac{\text { opposite }}{\text { hypotenuse }} \quad \sin \theta=\frac{y}{r}
$$

2. Cosine Ratio
3. Tangent Ratio
$\cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }}$
$\cos \theta=\frac{x}{r}$

The Three Reciprocal Trigonometric Ratios

1. Cosecant Ratio
$\csc \theta=\frac{\text { hypotenuse }}{\text { oppposite }}$
$\csc \theta=\frac{r}{y}$
2. Secant Ratio
$\sec \theta=\frac{\text { hypotenuse }}{\text { adjacent }}$
$\sec \theta=\frac{r}{x}$
3. Cotangent Ratio
$\cot \theta=\frac{\text { adjacent }}{\text { opposite }}$
$\cot \theta=\frac{x}{y}$

The cosecant ratio is the reciprocal of the sine ratio.

$$
\csc \theta=\frac{1}{\sin \theta}
$$

The secant ratio is the reciprocal of the cosine ratio.

$$
\sec \theta=\frac{1}{\cos \theta}
$$

The cotangent ratio is the reciprocal of the tangent ratio.

$$
\cot \theta=\frac{1}{\tan \theta}
$$

Suppose the angle θ is an angle in standard position. Given a point (x, y) on the terminal arm, at a distance r from the origin, we can determine the exact values of the six trigonometric ratios.

$$
\begin{array}{lll}
\sin \theta=\frac{y}{r} & \cos \theta=\frac{x}{r} & \tan \theta=\frac{y}{x} \\
\csc \theta=\frac{r}{y} & \sec \theta=\frac{r}{x} & \cot \theta=\frac{x}{y}
\end{array}
$$

Example 1

Given the point $P(-3,4)$, find the exact values of the six trigonometric ratios.
$r^{2}=x^{2}+y^{2}$
$r^{2}=(-3)^{2}+(4)^{2}$
$r^{2}=9+16$
$r^{2}=25$

$r=5 \quad$ (Note: r must be positive, so we need only write the positive root)

$$
\sin \theta=\frac{4}{5} \quad \cos \theta=\frac{-3}{5} \quad \tan \theta=\frac{4}{-3}=\frac{-4}{3}
$$

$\csc \theta=\frac{5}{4} \quad \sec \theta=\frac{5}{-3}=\frac{-5}{3} \quad \cot \theta=\frac{-3}{4}$

NOTE - If you are asked to find a trig ratio's exact value, leave the ratio as a fraction in simplest form. (No decimals!)
You may have to rationalize denominators so as not to leave radicals in the denominators of ratios.

Example 2

If $\sec \theta=-\frac{3}{2}$ and $\tan \theta>0$, find the exact values of the other five trigonometric ratios.

$$
\sec \theta=\frac{r}{x} \quad r=3, x=-2 \quad \text { (Remember, the radius must be positive.) }
$$

Use the CAST Rule to determine in which quadrant must the terminal arm lie?

S	A
T	C

Secant is the reciprocal of cosine, therefore it is negative in Quadrants 2 and 3. Tangent is positive in Quadrants 1 and 3. The terminal arm must lie in Quadrant 3.

Find y.

$$
\begin{gathered}
y^{2}=r^{2}-x^{2} \\
y^{2}=(3)^{2}-(-2)^{2} \\
y^{2}=9-4 \\
y^{2}=5 \\
y=-\sqrt{5} \quad \begin{array}{l}
\text { You must choose the negative } \\
y
\end{array} \\
\begin{array}{l}
\text { root. }
\end{array}
\end{gathered}
$$

$\sin \theta=\frac{-\sqrt{5}}{3}$
$\cos \theta=\frac{-2}{3}$
$\tan \theta=\frac{-\sqrt{5}}{-2}=\frac{\sqrt{5}}{2}$
$\csc \theta=\frac{3}{-\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}}=\frac{3 \sqrt{5}}{-5}=-\frac{3 \sqrt{5}}{5}$
$\cot \theta=\frac{-2}{-\sqrt{5}} \cdot \frac{-\sqrt{5}}{-\sqrt{5}}=\frac{2 \sqrt{5}}{5}$

