Worksheet - The Mean Value Theorem and Rolle's Theorem

The Mean Value Theorem (MVT)

If f is continuous on the closed interval $[a, b]$ and differentiable on the open interval (a, b), then there exists a number c in (a, b) such that $\frac{f(b)-f(a)}{b-a}=f^{\prime}(c)$.

Determine whether the MVT can be applied to f on the closed interval. If the MVT can be applied, find all values of c given by the theorem. If the MVT cannot be applied, explain why not.

1. $f(x)=x^{3},[0,1]$
2. $f(x)=x^{4}-8 x,[0,2]$
3. $f(x)=\frac{x+1}{x},[-1,2]$
4. $f(x)=x^{3}-x-1,[-1,2]$

Rolle's Theorem

Let f be continuous on the closed interval $[\mathrm{a}, \mathrm{b}]$ and differentiable on the open interval (a, b). If $f(a)=f(b)$ then there is at least one number c in (a, b) such that $f^{\prime}(c)=0$.

Determine whether Rolle's Theorem can be applied to f on the closed interval. If Rolle's Theorem can be applied, find all values c in the open interval such that $f^{\prime}(c)=0$. If Rolle's Theorem cannot be applied, explain why not.

1. $f(x)=x^{2}-5 x+4,[1,4]$
2. $f(x)=x^{\frac{2}{3}}-1,[-8,8]$
3. $f(x)=\frac{x^{2}-2 x-3}{x+2},[-1,3]$
4. $f(x)=\frac{x^{2}-1}{x},[-1,1]$
5. $f(x)=x \sqrt{6-x},[0,6]$
6. $c=\frac{\sqrt{3}}{3}$
7. $c=\sqrt[3]{2}$
8. $f(x)$ is not continuous on $[-1,2]$ because there is an infinite discontinuity at $x=0$. The MVT does not apply.
9. $c=1$

Rolle's Theorem

1. $c=\frac{5}{2}$
2. The function is not differentiable at $x=0$. Rolle's Theorem does not apply.
3. $c=-2+\sqrt{5}$
4. The function is not continuous at $x=0$. Rolle's Theorem does not apply.
5. $c=4$

Answer Key
The Mean Value Theorem

1. $c=\frac{\sqrt{3}}{3}$
2. $c=\sqrt[3]{2}$
3. $f(x)$ is not continuous on $[-1,2]$ because there is an infinite discontinuity at $x=0$. The MVT does not apply.
4. $c=1$

Rolle's Theorem

1. $c=\frac{5}{2}$
2. The function is not differentiable at $x=0$. Rolle's Theorem does not apply.
3. $c=-2+\sqrt{5}$
4. The function is not continuous at $x=0$. Rolle's Theorem does not apply.
5. $c=4$
